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A Non-Technical Introduction to
Brownian Motion

spemp:

This essay starts a series that looks at the topic of option pric-
ing. We start with an essay on the concept of Brownian
) motion, which has a long history in the physical sciences and
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a surprisingly long history in the field of finance. Readers with a

strong mathematical background may be disappointed, however.
Consistent with the other essays in this book, the material will be
presented with a minimum of mathematics. This makes it accessible
to more people, some of whom would then go on and study it in
more detail. Many mathematicians and economists have consis-

tently demonstrated to me that they cannot communicate what they
are doing in mmn]e terms, but if someone cannot exnplain a technical
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concept to a non—techmcal person, either the technical person does
ot understand the problem or it is not a very important probiem.
Let us start with the assumption that the prices of assets
evolve in a random manner. I do not care what the technical analysts
who waste the time and money of investors say, stock prices, cur-
rency rates, and interest rates are largely unpredictable. But unpre-
dictable does not mean one should not attempt to understand the

probability process driving the numbers. Estlmates of the expected

returns and volatilities are essential in investing. The manner in
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74 A Non-Technical Introduction to Brownian Motion

which asset prices fluctuate through time according to the laws of
probability is known as a srochastic process, where the word “sto-
chastic” means governed by the laws of probability.

A stochastic process is a sequence of observations from a
ility distribution. Rolling dice at regular time intervals is a
stochastic process. In this case the distribution is stable because the
possible outcomes do not change from one roll to the next. Rolling a
6-5 three times in a row, while highly unlikely, in no way changes
the probability of rolling another 6-5. A changing distribution, how-
ever, would be the case if we drew a card from a deck without
replacing the previously drawn cards. Real world asset prices proba-
bly come from changing distributions though it is difficult to deter-
mine when the distribution has changed. Empirical analysis of past
data can be useful in that context — not to predict the future but to
know when the numbers are coming out according to different
parameters of probability.

In around 1827, the Scottish scientist Robert Brown
observed the random behavior of pollen particles suspended in
water. This phenomenon came to be known as Brownian Motion.
About 80 years passed before Albert Einstein, surprisingly unaware
of the work of Brown, developed the mathematical properties of
Brownian motion. This is not to suggest that no work was being
done in the interim, but scientists did not always know what other
work was being done, especially in those days. It is not surprising
that it was Einstein who received most of the credit.

Let us start by assuming that a series of numbers is coming
out of a standard normal (bell-shaped) probability distribution. This
means that the numbers on average equal zero and have a standard
deviation of 1. Just as a reminder or if you are not aware: this means
that about two-thirds of the time, the numbers will be between +1
and -1, i.e., one standard deviation around the average of zero.
About 95% of the time, the numbers will be between two standard
deviations of the zero and 99% of the time, they will be between
three standard deviations of zero.

Numbers like this have very limited properties and in this
form are not very useful. Let us transform these numbers into some-

thing more useful. Suppose we are currentl at time ¢. Take an
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number you would like and call it Z(1). This is our starting point.
Now move ahead to time r+1 and draw a number from the standard
normal probability distribution. Call it e(#+1). A very simple trans-
formation of the standard normal variable into the Z variable would
be to add e(r+1) to Z(z) to obtain Z(t+1). Another simple transforma-
tion would be to multiply e(r+1) by a term we call ¢, which is the
length of time that elapses between ¢ and r+1. If that time interval
happened to be one minute,  would be 1/[(60)(24)(365)], or in other
words, the fraction of a year that elapses between ¢ and r+1. One
reason we like to multiply e(s+1) by a time factor is that we would
like our model to accommodate various time intervals between ¢ and
t+1. These statistical shocks that are the source of randomness
might be larger if they were spread out over a longer time period;
hence, the need to scale them by some function of time.

In fact, to model asset prices evolving continuously, we need
the interval between ¢ and r+1 to be as short as possible. Mathemati-
cians say that “in the limit,” meaning almost there but not quite,
will approach zero. When ¢ is so small that it is almost but not quite
zero, we use the symbol dz. Unfortunately, the model Z(t+1)=Z(t) +
e(t+1)dt will give us a problem when dt is nearly zero. This comes
from the fact that the variance of Z(t+1) will be nearly zero and zero
variance is the complete absence of randomness. That is because dt
is very small and to obtain the variance, we have to square it, which
drives it even closer to zero. Thus, the variable Z will have no vari-
ance, which takes away its randomness. We cannot even call it a
“variable” anymore. The problem is best resolved by multiplying
e(t+1) by the square root of dt, i.e., Z(1+1) = Z(t) + e(1+1)(dt)".
Then when we need to square the expression to take the variance,
we have no problems squaring (df)"%, which is just dt.

This model has many convenient properties. Suppose we are

~

interested in predicting a future value of Z, say at time s. Then the
expected value of Z(s) is Z(r). That is because the expected random

change in the process is zero. If you start off at Z(t) and keep incre-

menting it by values that average to zero, you would not expect to
get anywhere. The variance of Z(s) is d(s—t), or in other words, the
amount of time that elapses between now, time r. and the future
point, time s.
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This is the process called Brownian Motion. Now let us take

the difference between Z(t+1) and Z(r), which will be e(r+1)(dn) "2

N . 1 . .
We write this as dZ(t) = e(t+1)(dt) 2 This process, the increment to
the Brownian Motion, is called a Wiener process, named after the
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American mathematician, Norbert Wiener (1894-1964), who did
important work in this area. In pricing options, we are more inter-
ested in the process dZ(¢) than in the process Z(t). We shall trans-
form dZ(t) into something more useful for modeling asset prices,
but that is a topic covered in Essay 20.

It is perhaps important to note that the mathematics neces-
sary to define the expected value and variance require the mathemat-
ical technique of integration. The ordinary rules of integration,
however, do not automaticaily apply when the terms are stochastic.
Fortunately, work by the Japanese mathematician K. Itd proved that
the integral, defined as a “stochastic integral,” does exist through a
slightly different definition. Consequently many of the rules of ordi-
nary integration apply.

One interesting property of the Wiener process is that when
you square it, it become perfectly predictable. This seems counter-
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intuitive. How can you generate perfectly random numbers, square

them, and find them to be perfectly predictable? Well do not try any
barroom bets on this one yet. No human can draw numbers fast
enough to make this happen. But let us take a look at what this
means. Given that dZ(t) = e(t+1)(dt) %, we draw a value of e(z+1). Of
course it is unpredictable and we already know that its expected
value is zero and its variance is the square of (dt)l/2 that is, dr, times
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the variance of e(z+1), which is one, so the variance is simply dt.

Note that this uses the statistical rule that the variance of a constant,
(dt)l’/"’, times a random variable, e(z+1), is the constant squared times
the variance of the random variable.

Now suppose we square the value drawn. That will give us
e(t+1)2 times dt. Now we want to take the variance of this term.
Again, to take a variance involves squaring. Once we square dz, we
obtain zero, as discussed a few paragraphs back. Thus, the square of
dZ(t+1) has a variance of zero, which means that it is perfectly pre-
dictable and will in fact equal di. The only problem with doing an
experiment to see if you can predict it is that it relies on your ability
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to make dt be very small. You would have to draw values of e faster
than the speed of light. You can, however, do a reasonable replica-
tion of this phenomenon as I demonstrate in a paper I have written
(citation provided below). Putting things into words, however,
means that this noisy series of numbers is so small that when squar-
ing them, we obtain an even smaller series of numbers that con-
verges to a constant value, dr.

So why do these things matter? They are the foundations of
the most fundamental model used to price options. We shall need to
progress a little further, however, and I reserve that material for the
...... essay.

Brownian motion as a basis for modeling assets on which
options trade was evidently discovered by the French doctoral stu-
dent Louis Bachelier in 1900. Bachelier’s dissertation at the Sor-
bonne under the direction of the famed mathematician Henri
Poincaré was at that time considered to be uninteresting. It was dis-
covered more than 50 years later by an American economist James
Boness, who had it translated and reprinted. Aithough Bachelier
solved the option pricing problem only for a very limited case, he
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pointed others in the right direction.
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